

DESI Power Objectives

To supply electricity and energy services to villages in joint ventures with local partners

Reliably, Cleanly and Profitably

CHOSEN INSTRUMENT

Indpendent Rural Power Producers (IRPPs)

Independent Power Producers IPPs

IPPs pure-market instruments controlled by global financial forces

IPPs

- Maximise profits
- Maximise financial risk coverage for real and perceived risks
- More capital intensive than national internal financing
- Long completion cycles

Independent Rural Power Producers IRPPs

IRPPs social market equivalent of the pure-market IPPs

IRPPs

- Shorter completion cycle (ca. 1 year)
- Lower investment costs in biomass gasification
- Risks shared locally and nationally
- Profitable over a longer timeframe

DESI Power's IRPPs

DESI floats local cluster companies with local partners (DESI Power Orchha, DESI Power Kosi, etc.)

Minimum 1 MW installed capacity in one geographical proximity

 To ensure the financial base for continued Extension Services

Target Markets

- Primary
 Non-electrified and "theoretically electrified"
 villages (most of rural India)
- Secondary market
 Small scale industries (losses due to power problems. Large scale diesel generation)

Profile of DESI Customers

Rural micro industries for local value addition

- Agro processing
- Building materials (low cost housing)
- Workshops
- Cold storage users

Profile of DESI Customers

Domestic

- Lighting
- Water

Housewives

Cooking (energy efficient stoves)

Farmers

- Irrigation water
- Agro-forestry

Small Industries

Financing package for DESI Power IRPPs

Planned

- Debt and Equity (Ratio on a case to case basis
- Equity: DESI / Local partner / Other investors

During current Commercial Demonstration Phase

- Private investments
- Ethical investments
- Grants
- DESI has provided most of the equity.

Sources of Funds for Commercial IRPPs

- Promoters equity
- Local partner's equity
- Equity from conventional power utilities
- Ethical investment funds
- Grants from Foundations etc.
- MNES subsidy
- FCCC mechanisms: AlJ Pilot Phase, CDM, etc.
- Bank loans

DESI Power Technologies

- Biomass (mostly residues and weeds) gasification
- Tiny hydro
- Small wind
- Biogas
- Solar PV (niche applications and biomass-poor regions)
- Hybridisation (with fossil fuel or other RETs)

DESI's Business Plan: Target for biomass-based IRPPs

Year	2000	2001	2002	2003	2004	2005
Annual Installed						
Capacity MW	1	2	5	15	30	60
Cumulative MW	1	3	8	23	53	113
Direct Jobs/year	100	200	500	1500	3000	6000
Direct Jobs						
Cumulative	100	300	800	2300	5300	11300

A TYPICAL SCHEMATIC ARRANGEMENT OF A POWER PLANT WITH AN IISc - DASAG GASIFICATION SYSTEM

Specifications of Producer Gas Supplied From An IISc-DASAG Gasifier

Parameter Specification

Type Open top, down draft solid bio-mass gasifier

Feed stock Any solid biomass with bulk density over 200 kg/m³,

moisture content less than 15%, cut to a maximum size

of 60 mm x 20 mm x 20 mm.

Avg. Lower Calorific Value 4.6 ± 0.2 MJ / kg

Gas composition (% by CO: $20 \pm 1\%$; CH_4 : $3 \pm 1\%$, H_2 : $20 \pm 1\%$, CO_2 : $12 \pm 1\%$

volume) 1%;O₂: 0.1% (max); rest N₂

Turn down ratio (max/min 4:1

load)

Average Specific Weight 1.12 kg / Nm³

Parasitic plant loads Water pump. Suction blower

Application Diesel substitution of 80-85% achieved in diesel engines

without any modification at above 75% of the rated load.

Gas quality: Hot end Cold end

Tar: $70 \pm 30 \text{ ppm}$ < $40 \pm 10 \text{ ppm}$ Particles: $600 \pm 100 \text{ ppm}$ < $30 \pm 10 \text{ ppm}$

Gasification efficiency (hot) 80 % to 85 % at full load (at 30% load about 5% reduction)

Particulate size distribution 0.7 - 2 microns

Specific wood consumption 1 kg/kWh with 15 % moisture content

Biomass used in IISc open-top down-draft gasifiers

Species	Density (kg/m³)	Moisture
		content [%]
Casuarina	550 - 650	15
Eucalyptus	400 - 650	15
Phadauk	1'050 - 1'100	15
Silver oak	250 - 300	20
European Pine	200 - 250	15 – 37
Mulberry stalk	300 - 350	15
Ipomea	200 - 250	15
Jungle wood	300 - 600	20
Coconut shell	1'100 - 1'200	15
Cotton stalk	150 - 200	20
Buynath	1'100 - 1200	10
Sawdust, Coffee husk and	900 - 1000	12
other briquettes		

Plant performance DP Orchha

• Fuel used: Ipomea, Lantana

Gasifier rating: 100 Kgs/hr

• Engine rating: 2x50 kWe

Total no. of hours operated: 10,250

Total kWh generated: 293,000

Total oil saved: 70,000 liters

Total CO2 saved: 170,000 Kgs

Plant performance Orch ha

Running hours

Orchha Operating Hours

IISc-DASAG Open-Top Down-Draft
Gasifiers
The Swiss Biomass Gasification
Technology Demonstration
Programme
Chatel St Denis. 1995 - 2000.
Funded by the Swiss Government and the Technology Promoters.

The Pure Gas Engine Operated with IISc - DASAG Gasifier in Switzerland

Effluent Treatment

The contaminants in effluent discharged in the drains are lower than the Swiss norms.

Gaseous Emissions

All Swiss norms can be met.

Polyaromatic hydrocarbons (PAH) concentrations of in the producer gas and in the engine exhaust are well below the statutory limits.

Biomass-based Commercial Power Plants Operational Experience

No.	Location	Capacity (kWe)	Fuel Mode	Total operating hours (Hrs)
1	Orchha	2 X50	DF	10428 (Oct00)
2	Kolar	1 X 24 1 X 20	DF PG	389 (Nov 00) 152 (Nov 00)
3	Ramanagaram	2 X 275	DF	1400 (Aug 00)
4	Badadhara	1 x 40	DF	120 (May 00)

DF: Duel Fuel Mode PG: Pure Gas Mode

Cluster Companies

Cluster company	Partner	Services provided
DP Orchha DP Mahanadi	A NGO A community company	Handmade paper factory Sale of pumped water / Grid sale?
DP Kosi	A village jobs' co-operative	Micro-enterprises / water / lighting / process heat / cooking energy
DP Anantapur	A biomass co-operative	Grid sale / Fuel supply jobs. Agro-plantation planned.
DP Shanshi	A small scale industry	Reliable power.
DP MVIT	Engineering college	Reliable power for machines, laboratories and hostels.
DP Chitravathi	A power co-operative	Local industries / Grid.
DP SPG(MOU)	Engineering college	Reliable power for an industrial park.
DP GB (MOU)	A village SS industry	Reliable power.

November 2000

INDEPENDENT RURAL POWER PRODUCERS (IRPPs) PROMOTED AND/OR BUILT BY DESI POWER

Plant			Fuel Mode	Biomass	Plant operating	
No.	Company	Gasifier rating kWe	Engine rating kWe			hours or commissioning date
1	DESI Power Orchha	100	engines of 50 kW.	Dual fuel (Future one PG)	Ipomea. Lantana.	10428 (0ct00). Nov00: conversion of one engine to PG
2	DESI Power Mahanadi	100	36 kW.	Dual fuel	Ipomea.	120 (Slow load built up)
3	Kolar (Private investor)	50	26 kW DF 21 kW SF	Dual fuel and Pure gas	Eucalyptus. Coconut fronds. Lantana. Ipomea.	Total 541 h (Nov00)
4	DESI Power Kosi	50	36 kW.	Dual fuel	Ipomea. Agro- residue briquettes.	January 2001
5	DESI Power Anantapur	135	102	Pure gas	Juliflora.	April 2001
6	DESI Power Shanshi	100	100 20	Dual fuel	Mulberry shoots.	May 2001
7	DESI Power MVIT	60	Existin g	Dual fuel	Mulberry shoots. Eucalyptus.	April 2001
8	DESI Power Chitravathi	100	60	Pure gas	Mulberry shoots. Eucalyptus. Agro- residue briquettes	June 2001
9	DESI Power PSG (MOU)	135	102	Pure gas	Coconut shell and fronds	July 2001
10	DESI Power GB (MOU)	135	102	Pure gas	Agro-residue briquettes. Ipomea.	July 2001

Training Package And Extension Services

Conventional training package suitable for locally available manpower (including accounts and management).

Interactive computer based training package for less educated villagers: lessons, tests and regular revisions.

Refresher and retraining courses.

Maintenance management system.

Monthly Performance Audit: (technical, managerial and financial results and course-correction lists)

A 100 kWe IRPP based on biomass gasification (dual fuel engine). Pre Tax Profit Ratio as a Function of PLF, Plant Load

Electricity Tariff (1997-98): Comparison with PG

REALCOST OF POWER

CONVENTIONAL POWER:

T&D Power at user end

1 M W (Losses 30%)

Rs. 40 million / MW

Rs. 5 million

Conventional power plant

Rural areas

DECENTRALISED BIOMASS POWER:

Generation T&D Energy at user end

1 MW (Losses 10%) 0.9 MW

Rs. 35 million / MW Rs. 3 million Rs. 42 million / MW-EndUse

Primary en ergy saved compared to grid supply: 20% Saving in investment compared to grid supply: 34%

DESI's Parameters for Success

- People: Local ownership / partnership. Linkage to biomass management and supply.
- People: Affordability through local value addition and jobs.
- People: Integration of R&D, Engineering, Supply and Services.

DESI's Parameters for Success

- •Technology: Solid Research, Innovative Designs, Debugging in the field, Long Duration Testing.
- Technology: Maintenance management
- Training and continuous re-training.
- Extension Services: near at hand.
- Linkage: Economy and Ecology

Make

Access to electricity a constitutional human right of Indian citizens

Create a
Legal Framework for a Decentralised Power
Sector

 Make it a full and equal partner of the centralised sector

Establsih A Framework for Commercialising Rural Electricity and Energy Services

Mandate clean technologies for villages Give incentives for renewable energy

- Put a small levy on fossil fuels to fund clean electricity and energy services (an investment and loan fund)
- Create financing mechanisms to provide focused access to funds (like the current Rural Electrification Corporation)
- Provide incentives for private investment

Electricity Regulatory Commissions should

- Permit building, generation, and selling of electricity and energy services by IRPPs within a given area without hindrance
- Create uniform rules throughout the country
 (e.g., definition of eligibility of IRPPs for getting investment funds)

Electricity Regulatory Commissions should

- Mandate T&D companies to accept grid connection irrespective of rating (under defined technical specifications and safety conditions)
- Set fair conditions for wheeling
- Set uniform guidelines for grid's purchase of IRPP electricity
- Give incentives for co-generation